analytical foliation - definição. O que é analytical foliation. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é analytical foliation - definição

MATHEMATICAL CONCEPT
Regular foliation; Kronecker foliation; Foliation theory

Analytical technique         
METHOD OF DETERMINING A PROPERTY OF A SUBSTANCE OR MIXTURE
Analytical method; Analytical methods; Analytical techniques
Analytical technique is a method that is used to determine a chemical or physical property of a chemical substance, chemical element, or mixture. There are a wide variety of techniques used for analysis, from simple weighing to advanced techniques using highly specialized instrumentation.
Foliation         
·noun The process of forming into a leaf or leaves.
II. Foliation ·noun The manner in which the young leaves are dispo/ed within the bud.
III. Foliation ·noun The act of beating a metal into a thin plate, leaf, foil, or lamina.
IV. Foliation ·noun The act of coating with an amalgam of tin foil and quicksilver, as in making looking-glasses.
V. Foliation ·noun The enrichment of an opening by means of foils, arranged in trefoils, quatrefoils, ·etc.; also, one of the ornaments. ·see Tracery.
VI. Foliation ·noun The property, possessed by some crystalline rocks, of dividing into plates or slabs, which is due to the cleavage structure of one of the constituents, as mica or hornblende. It may sometimes include slaty structure or cleavage, though the latter is usually independent of any mineral constituent, and transverse to the bedding, it having been produced by pressure.
Analytical chemistry         
  • accelerator mass spectrometer]] used for [[radiocarbon dating]] and other analysis
  • bibcode = 2008Sci...320.1332S }}</ref>
  • Noise in a [[thermogravimetric analysis]]; lower noise in the middle of the plot results from less human activity (and environmental noise) at night
  • Block diagram of an analytical instrument showing the stimulus and measurement of response
  • [[Gustav Kirchhoff]] (left) and [[Robert Bunsen]] (right)
  • limit of quantification]] (LOQ), dynamic range, and limit of [[linearity]] (LOL)
  • The presence of [[copper]] in this qualitative analysis is indicated by the bluish-green color of the flame
  • US [[Food and Drug Administration]] scientist uses portable near-infrared spectroscopy device to detect potentially illegal substances
  • Separation of black ink on a [[thin-layer chromatography]] plate
STUDY OF THE SEPARATION, IDENTIFICATION, AND QUANTIFICATION OF THE CHEMICAL COMPONENTS OF MATERIALS
Analytical Chemistry; Chemistry, analytical; Chemical Analysis; Hyphenated separation techniques; Chemical analysis; Qualitative organic analysis; Analytical chemist; Qualitative Chemical Analysis; Quantitative chemical analysis; Quantitative Chemical Analysis; Chemistry, Analytical; Qualitative chemical analysis; Organic analysis; Analytic chemistry; Analytical chemists; History of analytical chemistry; Analytical tool; Analytical chemistry techniques
Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method.

Wikipédia

Foliation

In mathematics (differential geometry), a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable (of class Cr), or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1 (otherwise, C0 is a topological foliation). The number p (the dimension of the leaves) is called the dimension of the foliation and q = np is called its codimension.

In some papers on general relativity by mathematical physicists, the term foliation (or slicing) is used to describe a situation where the relevant Lorentz manifold (a (p+1)-dimensional spacetime) has been decomposed into hypersurfaces of dimension p, specified as the level sets of a real-valued smooth function (scalar field) whose gradient is everywhere non-zero; this smooth function is moreover usually assumed to be a time function, meaning that its gradient is everywhere time-like, so that its level-sets are all space-like hypersurfaces. In deference to standard mathematical terminology, these hypersurface are often called the leaves (or sometimes slices) of the foliation. Note that while this situation does constitute a codimension-1 foliation in the standard mathematical sense, examples of this type are actually globally trivial; while the leaves of a (mathematical) codimension-1 foliation are always locally the level sets of a function, they generally cannot be expressed this way globally, as a leaf may pass through a local-trivializing chart infinitely many times, and the holonomy around a leaf may also obstruct the existence of a globally-consistent defining functions for the leaves. For example, while the 3-sphere has a famous codimension-1 foliation discovered by Reeb, a codimension-1 foliation of a closed manifold cannot be given by the level sets of a smooth function, since a smooth function on a closed manifold necessarily has critical points at its maxima and minima.